Antibiothicotherapy

Objectives

- Review the classification of antimicrobials
- Define pharmacokinetic and pharmacodynamic principles and their relationship to effective antimicrobial therapy
- Review relevant microbiologic information as it relates to choosing an antimicrobial
- Discuss patient and drug related factors that influence the selection of the appropriate antimicrobial agent
- Identify monitoring parameters to evaluate antimicrobial therapy

What are Antimicrobials???

- Antimicrobials are drugs that destroy microbes, prevent their multiplication or growth, or prevent their pathogenic action
 - Differ in their physical, chemical, and pharmacological properties
 - Differ in antibacterial spectrum of activity
 - Differ in their mechanism of action

Classification of Antimicrobials

Inhibit cell wall synthesis

- Penicillins
- Cephalosporins
- Carbapenems
- Monobactams (aztreonam)
- Vancomycin

Inhibit protein synthesis

- Chloramphenicol
- Tetracyclines
- Macrolides
- Clindamycin
- Streptogramins (quinupristin/dalfopristin)
- Oxazolidinones (linezolid)
- Aminoglycosides

Alter nucleic acid metabolism

- Rifamycins
- Quinolones

Inhibit folate metabolism

- Trimethoprim
- Sulfamethoxazole

Miscellaneous

- Metronidazole
- Daptomycin

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Antimicrobial therapy

• Empiric

- Infecting organism(s) not yet identified
- More "broad spectrum"

Definitive

- Organism(s) identified and specific therapy chosen
- More "narrow" spectrum

Prophylactic or preventative

Prevent an initial infection or its recurrence after infection

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Is the Patient Infected???

- CAREFUL history and physical exam including relevant laboratory data and signs and symptoms
 - Temperature
 - White blood cell count (WBC)
 - WBC in normally sterile fluids (e.g. CSF)
 - Any swelling or erythema at a particular site
 - Purulent drainage from a visible site
 - Patient complaints
- Predisposing factors
 - Surgery, procedures, physical limitations, etc.

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors

Identification of pathogen

- Collection of infected material
- Stains
- Serologies
- Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Culture Results

- Minimum inhibitory concentration (MIC)
 - The lowest concentration of drug that prevents visible bacterial growth after 24 hours of incubation in a specified growth medium
 - Organism and antimicrobial specific
 - Interpretation
 - Pharmacokinetics of the drug in humans
 - Drug's activity versus the organism
 - Site of infection
 - Drug resistance mechanisms
- Report organism(s) and susceptibilities to antimicrobials
 - Susceptible (S)
 - Intermediate (I)
 - Resistant (R)

Culture Results

Example

BLOOD CULTURE 2004-07-30 10:56						
SPECIMEN	BLOOD					
DESCRIPTION:	POSITIVE FOR ESCHEDICHIA COLL()					
CULTURE:	POSITIVE FOR ESCHERICHIA COLI (<u>sens</u>) GRAM STAIN OF POSITIVE BOTTLE: GRAM NEGATIVE RODS					
CULTURE:	REPORTED TO DR AT 1119 ON 07/31/04					
Collection time: 2004-	07-30 10:56 Received time: 2004-07-30 10:56					
Status: final, Aceno: F:	Status: final, Aceno: F50319BCBLUD047U					

					POS	ITIV	E FO	R E	SCH	ERIC	CHIA	COI	ΙØ				
	METHOD:MICROSCAN MIC																
<u>AMI</u>	<u>AMP</u>	<u>CFZ</u>	<u>CPM</u>	<u>CFT</u>	<u>CEZ</u>	<u>CTX</u>	CRM	<u>CIP</u>	<u>GEN</u>	<u>IMP</u>	LVX	<u>MER</u>	<u>P/T</u>	<u>TIM</u>	<u>TOB</u>	<u>T/S</u>	PIP
<=4	<=8	<=4	<=2	<=4	<=2	<=8	<=4	<=1	<=1	<=4	<=2	<=4	<=8	<=16		<=2/38S	<=16
S	S	S	S	S	S	S	S	S	S	S	S	S	S	S		2,500	S

Culture Results

Example

BLOOD CULTURE 2004-06-02 10:42							
SPECIMEN DESCRIPTION	:BLOOD						
CULTURE:	POSITIVE FOR ESCHERICHIA COLI (<u>sens</u>)						
CULTURE:	GRAM STAIN OF POSITIVE BOTTLE: GRAM NEGATIVE RODS						
Collection time: 2004-06-02	10:42 Received time: 2004-06-02 10:42						
Status: final, Aceno: W30194BCBLUD0462							

				P	OSI	ΓΙVE	FOR	ESC	CHEI	RICH	IIA C	COLI	3				
	METHOD:MICROSCAN MIC																
<u>AMI</u>	<u>AMP</u>	<u>CFZ</u>	<u>CPM</u>	CFT	CEZ	<u>CTX</u>	<u>CRM</u>	CIP	<u>GEN</u>	<u>IMP</u>	LVX	MER	<u>P/T</u>	TIM	TOB	<u>T/S</u>	PIP
<=4 S	>16 R	>16 R	<=2 S	8 S	16 I	<=8 S	>16 R	>2 R	2 S	<=4 S	>4 R	<=4 S	<=8 S	64 I	2 S	<=2/385	8 64 I

Susceptibility Testing Methods

• Disk Diffusion (Kirby-Bauer disks)

Susceptibility Testing Methods

• Broth Dilution

Susceptibility Testing Methods

• E-test (epsilometer test)

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Drug Factors

Pharmacokinetics

Absorption

- IM, SC, topical
- GI via oral, tube, or rectal administration
- Bioavailability = amount of drug that reaches the systemic circulation

Distribution

 Affected by the drug's lipophilicity, partition coefficient, blood flow to tissues, pH, and protein binding

Metabolism

- Phase I
 - Generally inactivate the substrate into a more polar compound
 - Dealkylation, hydroxylation, oxidation, deamination
 - Cytochrome P-450 system (CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1)
- Phase II
 - Conjugation of the parent compound with larger molecules, increasing the polarity
 - Generally inactivate the parent compound
 - · Glucuronidation, sulfation, acetylation

Pharmacokinetics

Elimination

- Total body clearance
 - Renal + non-renal clearance
 - Affects half-life (t_{1/2})
- Renal clearance
 - Glomerular filtration, tubular secretion, passive diffusion
 - Dialysis
- Non-renal clearance
 - Sum of clearance pathways not involving the kidneys
 - Usually hepatic clearance, but also via biliary tree, intestines, skin
- Half-life
 - Steady state concentrations reached after 4-5 half lives
 - Varies from patient to patient
 - Affected by changes in end-organ function and protein binding

Pharmacodynamics

- Attempts to relate drug concentrations to their effect in the body
 - Desirable = bacterial killing
 - Undesirable = drug side effects
- Bacteriostatic
 - Inhibit growth or replication
- Bactericidal
 - Cause cell death

Pharmacokinetics, Pharmacodynamics, and the MIC

- Concentration vs. time-dependent killing agents
 - Concentration dependent agents

 bacterial killing as the drug concentrations exceed the MIC
 - Peak/MIC (AUC/MIC) ratio important
 - Quinolones, aminoglycosides
 - Time-dependent agents kill bacteria when the drug concentrations exceed the MIC
 - Time>MIC important
 - Penicillins, cephalosporins
- Post antibiotic effect (PAE)
 - Delayed regrowth of bacteria following exposure to the antimicrobial
 - Varies according to drug-bug combination

Concentration-dependent and Time-dependent agents vs. *Pseudomonas aeruginosa*

AUC/MIC and Survival Relationship for Quinolones

AUC/MIC and Outcomes Relationship for Ciprofloxacin

AAC 1993; 37: 1073-81.

Pharmacodynamic Parameters and Colony Count after 24 hours for Cefotaxime in

K. pneumoniae

Diagn Microbiol Infect Dis 1995; 22: 89-96

Antimicrobial Pharmacodynamic Parameters

Antimicrobials	Pharmacodynamic Characteristics	Goal of Regimen	Parameter Correlating with In Vivo Efficacy
Aminoglycosides Quinolones Metronidazole Daptomycin	Concentration- dependent Killing and Prolonged Persistent Effects	Maximization of Concentrations	Peak/MIC AUC ₀₋₂₄ /MIC
Penicillins Cephalosporins Aztreonam	Time-dependent Killing and NO Persistent Effects	Maximization of Exposure Time	Time Serum Levels Exceed MIC/MBC
Carbapenems Vancomycin Clindamycin Macrolides	Time-dependent Killing and Prolonged Persistent Effects	Maximization of Exposure Time (serum levels can fall below the MIC)	Time Serum Levels Exceed MIC/MBC

Post Antibiotic Effect (PAE)

- Delayed regrowth of bacteria following exposure to an antibiotic
 - Varies according to drug-bug combination
- Gram-positive organisms
 - Most antibiotics (beta-lactams) exhibit PAE ~1-2 hours
 - Aminoglycosides exhibit PAE < 1 hour
- Gram-negative organisms
 - Most beta-lactams (except imipenem) have a negligible PAE
 - Aminoglycosides and quinolones have PAE ≥ 2 hours
- Clinical significance unknown
 - Helps choose appropriate dosing interval

Aminoglycoside Concentrations

1.7 mg/kg q8h dosing

Aminoglycoside Concentrations 5 mg/kg q24h dosing

Other Drug Factors

Adverse effect profile and potential toxicity

Cost

- Acquisition cost + storage + preparation + distribution + administration
- Monitoring
- Length of hospitalization + readmissions
- Patient quality of life

Resistance

• Effects of the drug on the potential for the development of resistant bacteria in the patient, on the ward, and throughout the institution

Host Factors

Allergy

- Can be severe and life threatening
- Previous allergic reaction most reliable factor for development of a subsequent allergic reaction
- Obtain <u>thorough</u> allergy history
- Penicillin allergy
 - Avoid penicillins, cephalosporins, and carbapenems in patients with true anaphylaxis, bronchospasm
 - Potential to use cephalosporins in patients with a history of rash (~5-10% cross reactivity)

Age

- May assist in predicting likely pathogens and guide empiric therapy
- Renal and hepatic function vary with age
 - Neonates and elderly

Host Factors

- Pregnancy
 - Fetus at risk of drug teratogenicity
 - All antimicrobials cross the placenta in varying degrees
 - Penicillins, cephalosporins, erythromycin appear safe
 - Altered drug disposition
 - Penicillins, cephalosporins, and aminoglycosides are cleared more rapidly during pregnancy
 - \uparrow intravascular volume, \uparrow glomerular filtration rate, \uparrow hepatic and metabolic activities
- Genetic or metabolic abnormalities
 - Glucose-6-phosphate dehydrogenase (G6PD) deficiency
- Renal and hepatic function
 - Accumulation of drug metabolized and/or excreted by these routes with impaired function
 - ↑ risk of drug toxicity unless doses adjusted accordingly
 - Renal excretion is the most important route of elimination for the majority of antimicrobials
- Underlying disease states
 - Predispose to particular infectious diseases or alter most likely organisms

Site of Infection

- Most important factor to consider in antimicrobial selection
- Defines the most likely organisms
 - Especially helpful in empiric antimicrobial selection
- Determines the dose and route of administration of antimicrobial
 - Efficacy determined by adequate concentrations of antimicrobial at site of infection
 - Serum concentrations vs. tissue concentrations and relationship to MIC

BLOOD CULTURE 2004-06-02 10:42						
SPECIMEN DESCRIPTION	BLOOD					
CULTURE:	POSITIVE FOR ESCHERICHIA COLI (<u>sens</u>)					
CULTURE:	GRAM STAIN OF POSITIVE BOTTLE: GRAM NEGATIVE RODS					
Collection time: 2004-06-02	10:42 Received time: 2004-06-02 10:42					
Status: final, Aceno: W30194BCBLUD0462						

	POSITIVE FOR ESCHERICHIA COLI																
	METHOD:MICROSCAN MIC																
<u>AMI</u>	AMP	CFZ	CPM	CFT	CEZ	CTX	<u>CRM</u>	CIP	GEN	IMP	LVX	MER	P/T	TIM	TOB	T/S	PIP
<=4 S	>16 R	>16 R	<=2 S	8 S	16 I	<=8 S	>16 R	>2 R	2 S	<=4 S	>4 R	<=4 S	<=8 S	64 I	2 S	<=2/38	s 64 I

BLOOD CULTURE 2004-07-24 23:30						
SPECIMEN DESCRIPTION:	BLOOD PORT					
CULTURE:	POSITIVE FOR STAPHYLOCOCCUS AUREUS (sens)					
CULTURE:	GRAM STAIN OF POSITIVE BOTTLE: GRAM POSITIVE COCCI IN CLUSTERS REPORTED TO DR AT 23:38 ON 7/25/04					
Collection time: 20	04-07-24 23:30 Received time: 2004-07-24 23:30					
Status: final, Acene	S28725BCBLUD047O					

	POSITIVE FOR STAPHYLOCOCCUS AUREUS
	METHOD:MICROSCAN MIC
TE/C	DIE OVADENIVANIEDVICEZ CLN. ALIC CENICID LVX
<=2/38S	RIF OXAPEN VAN ERY CFZ CLN AUG GEN CIP LVX S <= 1 S 0.5 S > 8 R <= 2 S > 4 R <= 2 S <= 0.25S <= 4/2S <= 1 S <= 1 S <= 2

Site of Infection Will the antibiotic get there?

- Choice of agent, dose, and route important
 - Oral vs. IV administration
 - Bioavailability, severity of infection, site of infection, function of GI tract
 - Blood and tissue concentrations
 - Ampicillin/piperacillin → ↑ concentrations in bile
 - Fluoroquinolones → ↑ concentrations in bone
 - Quinolones, TMP/SMX, cephalosporins, amoxicillin $\rightarrow \uparrow$ concentrations in prostate
 - Ability to cross blood-brain barrier
 - Dependent on inflammation, lipophilicity, low mw, low protein binding, low degree of ionization
 - 3rd or 4th generation cephalosporins, chloramphenicol, ampicillin, PCN, oxacillin
 - Local infection problems
 - Aminoglycosides inactivated by low pH and low oxygen tension
 - Beta-lactams → inoculum effect

Concomitant Drug Therapy

- Influences the selection of appropriate drug therapy, the dosage, and necessary monitoring
- Drug interactions
 - \uparrow risk of toxicity or potential for \downarrow efficacy of antimicrobial
 - May affect the patient and/or the organisms
 - Pharmacokinetic interactions
 - · Alter drug absorption, distribution, metabolism, or excretion
 - Pharmacodynamic interactions
 - Alter pharmacologic response of a drug
 - Selection of combination antimicrobial therapy (≥ 2 agents) requires understanding of the interaction potential

Drug Interactions

- Pharmacokinetic
 - An alteration in one or more of the object drug's basic parameters
- Absorption
 - Bioavailability
- Distribution
 - Protein binding
- Metabolism
 - CYP450
- Elimination
 - renal

- Pharmacodynamic
 - An alteration in the drug's desired effects
- Synergistic/additive
 - May lead to desired or toxic effect
- Antagonistic
 - May lead to detrimental effects
- Indirect effects
 - Effect of one drug alters effect of another

Combination Antimicrobial Therapy

- Synergistic
- Antagonistic
- Indifferent

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Monitoring

- Efficacy and toxicity of antimicrobials
- Clinical assessment
 - Improvement in signs and symptoms
 - Fever curve, ↓ WBC
 - ↓ erythema, pain, cough, drainage, etc.
- Antimicrobial regimen
 - Serum levels
 - Renal and/or hepatic function
 - Other lab tests as needed
 - Consider IV to PO switch
- Microbiology reports
 - Modify antimicrobial regimen to susceptibility results if necessary
 - Resistance?
 - "Narrow" spectrum of antimicrobial if appropriate

Antimicrobial Factors in Drug Selection

Cultures grew....

CULTURE &	SMEAR CSF 2004-10-09 11:28
SPECIMEN DESCRIPTION	N: CEREBROSPINAL FLUID
GRAM SMEAR:	MANY WBCS SEEN
GRAM SMEAR:	NO ORGANISMS SEEN
CULTURE:	HEAVY STAPHYLOCOCCUS AUREUS (sens)
CULTURE:	REPORTED TO DR AT 0930 ON 10/10/04
Collection time: 2004-10-09	0 11:28 Received time: 2004-10-09 11:28
Status: final, Aceno: S67172	2B400 04A9

HEAVY STAPHYLOCOCCUS AUREUS
METHOD:MICROSCAN MIC
T/S RIF OXA PEN VAN ERYCFZ CLN AUG GEN CIP LVX
<=2/38S <=1 S <=0.25S >8 R <=2 S >4 R <=2 S 0.5 S <=4/2S <=1 S <=1 S <=2 S

Cultures grew MSSA, patient's therapy changed to oxacillin + rifampin. Shunt removed. WBC ↓. Patient completed course of IV antibiotics.

Monitor for resolution of infection

Monitor hepatic profile

Cultures grew....

	BLOOD CULTURE 2004-07-27 14:25							
SPECIMEN	BLOOD 2							
DESCRIPTION:	BLOOD 2							
CULTURE:	POSITIVE FOR KLEBSIELLA PNEUMONIAE (<u>sens</u>)							
CULTURE:	GRAM STAIN OF POSITIVE BOTTLE: GRAM NEGATIVE RODS							
COLTOKE.	REPORTED TO DR @11:35 ON 07/28/04.							
Collection time: 2004-0	07-27 14:25 Received time: 2004-07-27 16:00							
Status: final, Aceno: T15684BCBLUD047R								

	POSITIVE FOR KLEBSIELLA PNEUMONIAE																
	METHOD:MICROSCAN MIC																
AMI	A/S	<u>CFZ</u>	CPM	CFT	CEZ	<u>CTX</u>	CRM	CIP	<u>GEN</u>	IMP	LVX	MER	P/T	TIM	TOB	T/S	PIP
<=4 S	>16/8R	>16 R	<=2 S	8 S	16 I	>32 R	>16 R	<=1 S	<=1 S	<=4 S	<=2 S	<=4 S	>64 R	>64 R	<=1 S	>2/38R	>64 R

Levofloxacin and metronidazole continued to complete a course of therapy. Surgical intervention. Vancomycin discontinued.

Summary

- Antimicrobials are essential components to treating infections
- Appropriate selection of antimicrobials is more complicated than matching a drug to a bug
- While a number of antimicrobials potentially can be considered, clinical efficacy, adverse effect profile, pharmacokinetic disposition, and cost ultimately guide therapy
- Once an agent has been chosen, the dosage must be based upon the size of the patient, site of infection, route of elimination, and other factors
- Optimize therapy for each patient and try to avoid patient harm
- Use antimicrobials only when needed for as short a time period as needed to treat the infection in order to limit the emergence of bacterial resistance