Clinical Practice Guidelines

About these slides

- These slides give a comprehensive overview of the EASL clinical practice guidelines on the management of hepatitis E infection
- The guidelines were first presented at the International Liver Congress
 2018 and will be published soon in the Journal of Hepatology
 - The full publication will be downloadable from the <u>Clinical Practice</u> <u>Guidelines</u> section of the EASL website once available
- Please feel free to use, adapt, and share these slides for your own personal use; however, please acknowledge EASL as the source

Virology of HEV

- Only infect humans
- Faecal-oral spread via contaminated water
- Large outbreaks
- Brief, self-limiting
- Never chronic
- High mortality in pregnancy (25%)

- Endemic in animal species; eg, pigs and wild boar
- Zoonotic infections in humans
- High-income countries
- China: GT 4 most common
- · S. America: GT 3 only

- Have only been reported in wild boar
- GT 7 identified in patient regularly consuming camel meat and milk
- Have since been identified in camels

Phylogenetic relationship of hepeviruses identified in various hosts

HEV GT 1 and 2 in brief

- ~20 million infections worldwide
 - 3 million symptomatic cases and 70,000 deaths/year*
 - WHO guidelines should be consulted for management of outbreaks of acute HEV in resource-limited settings
- Brief, self-limiting, usually in young adults
- Never chronic
 - Acute-on-chronic liver failure possible
- High mortality in pregnancy (25%)

Re	Recommendations Level of evidence Grade of recommendation			
•	Travellers with hepatitis returning from areas endemic for HEV GT 1 or 2 should be tested for HEV	А	1	
•	Pregnant women with HEV GT 1 or 2 should be cared for in a high-dependency setting, and transferred to a liver transplant unit if liver failure occurs	А	1	

HEV GT 3 and 4: epidemiology

- Endemic in some developing countries, as well as most high-income countries
- Most common cause of acute viral hepatitis in many European countries
- Estimated that ≥2 million locally acquired HEV infections/year
 - Most as a result of zoonotic infection
 - Primary hosts are pigs
- HEV GT 3 and 4 tend to affect older males
 - In an English study, male:female ratio was 3:1; median age, 63 years¹
- Incidence varies between and within countries, and over time
 - Multiple 'hotspots' of HEV infection in Europe

Clinical aspects: acute infection

- Acute HEV GT 3 infection is clinically silent in most patients
 - <5% may develop symptoms of acute hepatitis</p>
 - Elevated liver enzymes, jaundice and non-specific symptoms*
- Immunocompetent patients clear the infection spontaneously
 - Progression to ALF is rare with HEV GT 3
 - ACLF occurs occasionally
- Non-sterilizing immunity develops after infection has cleared
 - Re-infection possible, but with lower risk of symptomatic hepatitis

Recommendations Level of evidence Gra	de of recomn	nendation
Should test for HEV in:All patients with symptoms consistent with acute hepatitis	А	1
Suggest testing for HEV in: Patients with unexplained flares of chronic liver disease	С	2

Clinical aspects: chronic infection

- Immunosuppressed patients can fail to clear HEV infection
 - Progression to chronic hepatitis*
- Immunosuppressed groups include:

Chronic HEV has mainly been described in the solid organ transplant setting

- Solid organ transplant recipients
 - ~50–66% of HEV-infected organ transplant recipients develop chronic hepatitis
- Patients with haematological disorders
- Individuals living with HIV
- Patients with rheumatic disorders receiving heavy immunosuppression
- Most patients are asymptomatic and present with mild and persistent LFT abnormalities

Recommendations	Grade of evidence Grade of recommendation		
Should test for HEV in:All immunosuppressed patients with ur	nexplained abnormal LFTs	А	1

Transmission and disease progression in transplanted individuals

Extrahepatic manifestations

Extrahepatic manifestations of HEV are increasingly recognized

Organ system	Clinical syndrome	Notes
Neurological	 Neuralgic amyotrophy* Guillain–Barré syndrome* Meningoencephalitis* Mononeuritis multiplex Myositis Bell's palsy, vestibular neuritis and peripheral neuropathy 	 ~150 cases of neurological injury (in HEV GT 3); mainly Europe Most (>90%) cases in the immunocompetent Most important
Renal*	 Membranoproliferative and membranous glomerulonephritis IgA nephropathy 	 Mainly immunosuppressed GT 3-infected patients Renal function improves and proteinuria levels decrease following HEV clearance
Haematological	 Thrombocytopenia Monoclonal immunoglobulin Cryoglobulinaemia Aplastic anaemia† Haemolytic anaemia† 	 Mild thrombocytopenia is common; occasionally severe Reported in 25% of cases of acute HEV in UK study Occurs mainly in association with renal disease
Other	 Acute pancreatitis Arthritis† Myocarditis† Autoimmune thyroiditis† 	55 cases worldwide. HEV GT 1 only; usually mild

Laboratory diagnosis of HEV infection

- Incubation period for HEV is ~15–60 days
 - HEV RNA is detected ~3 weeks post-infection in blood and stool
 - Shortly before onset of symptoms
- At clinical onset biochemical markers become elevated
 - First IgM followed by IgG

Laboratory diagnosis of HEV infection

- Acute HEV infection can be diagnosed by detection of anti-HEV antibodies
 - IgM, IgG or both by enzyme immunoassays in combination with HEV NAT
- Serological testing relies upon detection of anti-IgM and (rising) IgG

Infection status	Positive markers
Current infection – acute	 HEV RNA HEV RNA + anti-HEV IgM HEV RNA + anti-HEV IgG* HEV RNA + anti-HEV IgM + anti-HEV IgG Anti-HEV IgM + anti-HEV IgG (rising) HEV antigen
Current infection – chronic	 HEV RNA (± anti-HEV) ≥3 months HEV antigen
Past infection	Anti-HEV IgG

Molecular analysis of HEV

- Detection of HEV RNA in blood or stool is indicative of HEV infection
- In immunosuppressed patients with chronic HEV, anti-HEV antibodies are often undetectable
 - NATs are the only reliable means of diagnosis
- In chronic cases, viral load testing should be used
 - To evaluate patient response to treatment
 - To identify relapsing infections

Recommendations Grade of evidence Grade of recommendation		
A combination of serology and NAT testing should be used to diagnose HEV infection		1
NAT testing should be used to diagnose chronic HEV infection	Α	1

Treatment of acute HEV infection

- Acute HEV infection does not usually require antiviral therapy*
- Most cases of HEV infection are spontaneously cleared
 - Some patients may progress to liver failure
 - Ribavirin
 - Early therapy of acute HEV may shorten course of disease and reduce overall morbidity

Recommendation Grade of evidence Grade of recommendation			nmendation
Ribavirin treatment may be c severe acute hepatitis or acu		С	2

Management of HEV infection

- Optimal treatment duration in patients who test HEV RNA positive after 4 or 8 weeks of therapy and who are HEV RNA negative after 12 weeks of therapy is unknown*
- Optimal therapeutic approach unknown in patients who show no response to ribavirin and/or who relapse after retreatment*

Recommendation ☐ Grade of evidence ☐ Gra	ade of recomr	mendation
 If HEV RNA is still detectable in serum and/or stool after 12 weeks, ribavirin monotherapy may be continued for an additional 3 months (6 months therapy overall) 	С	2
 Liver transplant recipients who show no response to ribavirin can be considered for treatment with pegylated interferon-α 	С	2

