Clinical Practice Guidelines ### About these slides - These slides give a comprehensive overview of the EASL clinical practice guidelines on the management of hepatitis E infection - The guidelines were first presented at the International Liver Congress 2018 and will be published soon in the Journal of Hepatology - The full publication will be downloadable from the <u>Clinical Practice</u> <u>Guidelines</u> section of the EASL website once available - Please feel free to use, adapt, and share these slides for your own personal use; however, please acknowledge EASL as the source ### Virology of HEV - Only infect humans - Faecal-oral spread via contaminated water - Large outbreaks - Brief, self-limiting - Never chronic - High mortality in pregnancy (25%) - Endemic in animal species; eg, pigs and wild boar - Zoonotic infections in humans - High-income countries - China: GT 4 most common - · S. America: GT 3 only - Have only been reported in wild boar - GT 7 identified in patient regularly consuming camel meat and milk - Have since been identified in camels # Phylogenetic relationship of hepeviruses identified in various hosts ### HEV GT 1 and 2 in brief - ~20 million infections worldwide - 3 million symptomatic cases and 70,000 deaths/year* - WHO guidelines should be consulted for management of outbreaks of acute HEV in resource-limited settings - Brief, self-limiting, usually in young adults - Never chronic - Acute-on-chronic liver failure possible - High mortality in pregnancy (25%) | Re | Recommendations Level of evidence Grade of recommendation | | | | |----|--|---|---|--| | • | Travellers with hepatitis returning from areas endemic for HEV GT 1 or 2 should be tested for HEV | А | 1 | | | • | Pregnant women with HEV GT 1 or 2 should be cared for in a high-dependency setting, and transferred to a liver transplant unit if liver failure occurs | А | 1 | | ### HEV GT 3 and 4: epidemiology - Endemic in some developing countries, as well as most high-income countries - Most common cause of acute viral hepatitis in many European countries - Estimated that ≥2 million locally acquired HEV infections/year - Most as a result of zoonotic infection - Primary hosts are pigs - HEV GT 3 and 4 tend to affect older males - In an English study, male:female ratio was 3:1; median age, 63 years¹ - Incidence varies between and within countries, and over time - Multiple 'hotspots' of HEV infection in Europe ### Clinical aspects: acute infection - Acute HEV GT 3 infection is clinically silent in most patients - <5% may develop symptoms of acute hepatitis</p> - Elevated liver enzymes, jaundice and non-specific symptoms* - Immunocompetent patients clear the infection spontaneously - Progression to ALF is rare with HEV GT 3 - ACLF occurs occasionally - Non-sterilizing immunity develops after infection has cleared - Re-infection possible, but with lower risk of symptomatic hepatitis | Recommendations Level of evidence Gra | de of recomn | nendation | |--|--------------|-----------| | Should test for HEV in:All patients with symptoms consistent with acute hepatitis | А | 1 | | Suggest testing for HEV in: Patients with unexplained flares of chronic liver disease | С | 2 | ### Clinical aspects: chronic infection - Immunosuppressed patients can fail to clear HEV infection - Progression to chronic hepatitis* - Immunosuppressed groups include: Chronic HEV has mainly been described in the solid organ transplant setting - Solid organ transplant recipients - ~50–66% of HEV-infected organ transplant recipients develop chronic hepatitis - Patients with haematological disorders - Individuals living with HIV - Patients with rheumatic disorders receiving heavy immunosuppression - Most patients are asymptomatic and present with mild and persistent LFT abnormalities | Recommendations | Grade of evidence Grade of recommendation | | | |---|---|---|---| | Should test for HEV in:All immunosuppressed patients with ur | nexplained abnormal LFTs | А | 1 | # Transmission and disease progression in transplanted individuals ## Extrahepatic manifestations #### Extrahepatic manifestations of HEV are increasingly recognized | Organ system | Clinical syndrome | Notes | |----------------|--|--| | Neurological | Neuralgic amyotrophy* Guillain–Barré syndrome* Meningoencephalitis* Mononeuritis multiplex Myositis Bell's palsy, vestibular neuritis and peripheral neuropathy | ~150 cases of neurological injury (in HEV GT 3); mainly Europe Most (>90%) cases in the immunocompetent Most important | | Renal* | Membranoproliferative and
membranous
glomerulonephritis IgA nephropathy | Mainly immunosuppressed GT 3-infected patients Renal function improves and proteinuria levels decrease following HEV clearance | | Haematological | Thrombocytopenia Monoclonal immunoglobulin Cryoglobulinaemia Aplastic anaemia† Haemolytic anaemia† | Mild thrombocytopenia is common; occasionally severe Reported in 25% of cases of acute HEV in UK study Occurs mainly in association with renal disease | | Other | Acute pancreatitis Arthritis† Myocarditis† Autoimmune thyroiditis† | 55 cases worldwide. HEV GT 1 only; usually mild | ## Laboratory diagnosis of HEV infection - Incubation period for HEV is ~15–60 days - HEV RNA is detected ~3 weeks post-infection in blood and stool - Shortly before onset of symptoms - At clinical onset biochemical markers become elevated - First IgM followed by IgG ## Laboratory diagnosis of HEV infection - Acute HEV infection can be diagnosed by detection of anti-HEV antibodies - IgM, IgG or both by enzyme immunoassays in combination with HEV NAT - Serological testing relies upon detection of anti-IgM and (rising) IgG | Infection status | Positive markers | |-----------------------------|--| | Current infection – acute | HEV RNA HEV RNA + anti-HEV IgM HEV RNA + anti-HEV IgG* HEV RNA + anti-HEV IgM + anti-HEV IgG Anti-HEV IgM + anti-HEV IgG (rising) HEV antigen | | Current infection – chronic | HEV RNA (± anti-HEV) ≥3 months HEV antigen | | Past infection | Anti-HEV IgG | ### Molecular analysis of HEV - Detection of HEV RNA in blood or stool is indicative of HEV infection - In immunosuppressed patients with chronic HEV, anti-HEV antibodies are often undetectable - NATs are the only reliable means of diagnosis - In chronic cases, viral load testing should be used - To evaluate patient response to treatment - To identify relapsing infections | Recommendations Grade of evidence Grade of recommendation | | | |--|---|---| | A combination of serology and NAT testing should be used to diagnose HEV infection | | 1 | | NAT testing should be used to diagnose chronic HEV infection | Α | 1 | #### Treatment of acute HEV infection - Acute HEV infection does not usually require antiviral therapy* - Most cases of HEV infection are spontaneously cleared - Some patients may progress to liver failure - Ribavirin - Early therapy of acute HEV may shorten course of disease and reduce overall morbidity | Recommendation Grade of evidence Grade of recommendation | | | nmendation | |---|--|---|------------| | Ribavirin treatment may be c
severe acute hepatitis or acu | | С | 2 | ## Management of HEV infection - Optimal treatment duration in patients who test HEV RNA positive after 4 or 8 weeks of therapy and who are HEV RNA negative after 12 weeks of therapy is unknown* - Optimal therapeutic approach unknown in patients who show no response to ribavirin and/or who relapse after retreatment* | Recommendation ☐ Grade of evidence ☐ Gra | ade of recomr | mendation | |---|---------------|-----------| | If HEV RNA is still detectable in serum and/or stool after
12 weeks, ribavirin monotherapy may be continued for
an additional 3 months (6 months therapy overall) | С | 2 | | Liver transplant recipients who show no response to
ribavirin can be considered for treatment with pegylated
interferon-α | С | 2 |